

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3257-3259

## Microwave-assisted synthesis of pyrazolo[3,4-*d*]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent-free conditions

Jairo Quiroga<sup>a,\*</sup>, Jorge Trilleras<sup>a</sup>, Braulio Insuasty<sup>a</sup>, Rodrigo Abonía<sup>a</sup>, Manuel Nogueras<sup>b,\*</sup>, Antonio Marchal<sup>b</sup>, Justo Cobo<sup>b</sup>

<sup>a</sup> Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A. A. 25360 Cali, Colombia <sup>b</sup> Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain

> Received 31 January 2008; revised 12 March 2008; accepted 18 March 2008 Available online 23 March 2008

## Abstract

The microwave-induced synthesis of pyrazolo[3,4-*d*]pyrimidines **4** in the reaction of  $N^4$ -substituted-2,4-diamino-6-chloro-5-carbaldehydes **3** with hydrazine is described here. Precursors **3** have been prepared by the mono-amination of 2-amino-4,6-dichloropyrimidine-5carbaldehyde **2** with aliphatic and aromatic amines. The reaction times with primary amines were relatively shorter than for secondary amines.

© 2008 Published by Elsevier Ltd.

Keywords: Formylation; Vilsmeier-Haack reaction

The structural diversity and biological importance of pyrimidines have made them attractive targets for synthesis over many years. The pyrimidine is a widespread heterocyclic moiety, which is present in numerous natural products as well as synthetic pharmacophores with biological activities.<sup>1</sup> Substituted pyrimidines, particularly with amino-groups at 2 and 4 positions, are known pharmacophores in several structure-based drug design approaches in medicinal chemistry.<sup>2</sup> The 5-formylpyrimidines can be used as precursor in the synthesis of fused pyrimidine systems, among them we highlight the pyrazolo[3,4-*d*]pyrimidines, which are formed in several steps from a suitable pyrazole, or less frequently from a pyrimidine.<sup>3</sup> Pyrazolo-[3,4-*d*]pyrimidines are a class of heterocyclic compounds with very important biological properties.<sup>4</sup>

On the other hand, it has become widely accepted that many classical reactions under microwave irradiation perform better than reactions by conventional heating.<sup>5,6</sup> The microwave irradiation can be used to carry out a wide range of reactions in short times and with high yield and regioselectivity, without the need for solvents.<sup>7</sup> In the course of our research field aimed at the preparation of bioactive nitrogen-containing heterocycles, we addressed the synthesis of pyrazolo[3,4-d]pyrimidines. In this letter, we describe a versatile synthesis of N<sup>4</sup>-substituted-4,6-diaminopyrazolo[3,4-d]pyrimidines 4 using microwave irradiation in the absence of solvent from N<sup>4</sup>-substituted-2,4-diamino-6-chloropyrimidine-5-carbaldehydes 3 in the reaction with hydrazine hydrate with good yields (Scheme 1 and Table 1). It is interesting to note that when this same reaction was carried out by conventional heating of aldehydes 3 with hydrazine hydrate, reactions preceded rather similarly rendering products 4 in equal yields. The only difference between those methods is that by microwave irradiation the reaction time is much shorter than by heating, 1 versus 30 min, respectively.<sup>8</sup>

<sup>&</sup>lt;sup>\*</sup> Corresponding authors. Fax: +57 2 33392440 (J.Q.); fax: +34 618907111 (M.N.).

*E-mail addresses:* jaiquir@univalle.edu.co (J. Quiroga), mmontiel@ ujaen.es (M. Nogueras).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2008 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2008.03.090

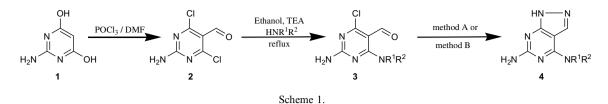
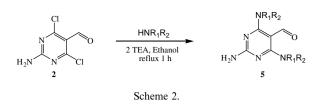



Table 1

Products of mono-amination of 4,6-dichloropyrimidine-5-carbaldehyde 3 and preparation of 4-substituted-pyrazolo[3,4-d]pyrimidines 4

| Entry | Amine                     | Compound 3            |           | Compound 4 |                        |
|-------|---------------------------|-----------------------|-----------|------------|------------------------|
|       |                           | $Mp(^{\circ}C)(^{a})$ | Yield (%) | Mp (°C)    | Yield <sup>b</sup> (%) |
| 1     | <i>N</i> -Methylaniline   | >180 dec              | 94        | 313-315    | 70                     |
| 2     | N-Ethylaniline            | 170-172 (166-169)     | 96        | 275-277    | 70                     |
| 3     | 4-Methoxy-N-methylaniline | 163–165               | 80        | 205-207    | 73                     |
| 4     | Aniline                   | 209-211 (205-207)     | 80        | 296-298    | 70                     |
| 5     | <i>p</i> -Toluidine       | 202–204               | 75        | 271-273    | 93                     |
| 6     | 3-Chloroaniline           | 233–235               | 85        | 289-291    | 60                     |
| 7     | 4-Chloroaniline           | 226–228               | 80        | 296-298    | 60                     |
| 8     | 4-Methoxyaniline          | 193–195               | 93        | 248-250    | 66                     |
| 9     | 2-Methoxy-N-methylaniline | 181–183               | 80        | 222-224    | 70                     |
| 10    | 2-Methyl-N-methylaniline  | 183–185               | 80        | 265-267    | 80                     |
| 11    | N-Methyl-p-toluidine      | 176–178               | 80        | 270-272    | 60                     |
| 12    | 4-Aminophenol             | >300 dec              | 70        | >300 dec   | 70                     |
| 13    | 4-Aminobenzoic acid       | >250 dec              | 70        | >300 dec   | 80                     |
| 14    | Benzylamine               | 179–181               | 70        | >250 dec   | 60                     |
| 15    | N-Phenylbenzylamine       | 165–167               | 70        | 257-259    | 80                     |
| 16    | N-Ethylbenzylamine        | 114–116               | 70        | 198-200    | 70                     |
| 17    | 3,4-Dimethoxybenzylamine  | 160–162               | 80        | 282-284    | 80                     |
| 18    | N-Methylbenzylamine       | 169-171 (168-170)     | 40        | 221-223    | 90                     |
| 19    | N-Ethylbenzylamine        | 114–116               | 70        | 198-200    | 70                     |
| 21    | Dibenzylamine             | 160–162               | 40        | 234-236    | 50                     |
| 22    | 2-(1H-Pyrrol-1-yl)aniline | 202-204               | 60        | 233-235    | 77                     |
| 23    | Indoline                  | >185 dec              | 95        | >300 dec   | 70                     |
| 24    | Diethylamine              | 131-133 (134-137)     | 70        | 259-261    | 40                     |
| 25    | Dimethylamine             | 189–191               | 80        | >300       | 50                     |
| 26    | Dodecylamine              | 92–94                 | 60        | 139-141    | 80                     |
| 27    | Cyclohexylamine           | 134–136               | 60        | 267-269    | 50                     |
| 28    | N-Methylcyclohexylamine   | 194–196               | 80        | 255-257    | 90                     |
| 29    | Piperidine                | 173–175               | 71        | 242-244    | 70                     |
| 30    | Pyrrolidine               | 178-180 (181-184)     | 54        | 287-289    | 50                     |
| 31    | Morpholine                | 176–178 (173–174)     | 81        | 228-230    | 87                     |
| 32    | 2-(Piperazin-1-yl)ethanol | 176–178               | 72        | 250-252    | 60                     |

<sup>a</sup> Mp reported in the literature.<sup>9</sup>


<sup>b</sup> The yields reported were obtained by both methods.

4,6-Dichloropyrimidine-5-carbaldehyde **2** has been used as a functional starting material for the synthesis of N<sup>4</sup>-substituted-2,4-diamino-6-chloropyrimidine-5-carbaldehydes, and due to the highly electron-deficient nature of the pyrimidine ring the nucleophilic aromatic substitution ( $S_NAr$ ) allows us to introduce the amino group of different structures developing synthetic routes for the preparation of various 5-pyrimidinecarbaldehydes **3**.<sup>9</sup> Accordingly, we carried out the reaction of equimolar amounts of aldehyde **2** with a variety of amines, aliphatic, aromatic and heterocyclic, in a basic medium (triethylamine, TEA) under ethanol reflux (Scheme 1 and Table 1).<sup>10</sup>

As it can be seen from Table 1 all types of amines, including aliphatics, cyclic and alicyclic amines, aromatic, heteroaromatic and benzylic amines reacted readily well with 2-amino-4,6-dichloropyrimidine-5-carbaldehyde 2 to give the mono-substituted compounds 3 in good yields, which is controlled with equimolar ratio of reagent.

If instead of equimolar ratio, the amination of 2-amino-4,6-dichloropyrimidine-5-carbaldehyde **2** was carried out in the presence of a double molar ratio of amine and TEA with respect to aldehyde **2**, the disubstitution product **5** was obtained (Scheme 2).<sup>11,12</sup>

The structure of all new compounds was determined on the basis of their analytical and 1D and 2D-NMR spectral data mainly, HR-MS, which are in agreement with their proposed structure. Single crystal X-ray diffraction analysis of compound 4 (entry 1,  $R^1 = C_6H_5$ ,  $R^2 = CH_3$ ) and 5 ( $R^1 = H_3CC_6H_4$ ,  $R^2 = CH_3$ ) was used to corroborate the postulated structures.<sup>12</sup>



We have prepared a variety of  $N^4$ -substituted-2,4-diamino-6-chloropyrimidine-5-carbaldehydes by monoamination with a variety of amines, when the nucleophilic mono-substitution is controlled with the molar ratio of reagent. These compounds are useful intermediates in the preparation of fused pyrimidine derivatives, such as pyrazolo[3,4-*d*]pyrimidines, which can be prepared also under microwave irradiation in the absence of solvent.

## Acknowledgements

The authors thank 'Servicios Técnicos de Investigación of Universidad de Jaén' and the staff for data collection, and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), the Universidad de Jaén and Universidad del Valle for financial support. J.T. thanks Colciencias for supporting a research visit to the Universidad de Jaén, and Fabio Zuluaga for reviewing this manuscript.

## **References and notes**

- (a) Choudhury, A.; Chen, H.; Nilsen, C. N.; Sorgi, K. L. *Tetrahedron Lett.* 2008, 49, 102–105; (b) Brændvang, M.; Gundersen, L. L. *Tetrahedron Lett.* 2007, 48, 3057–3059; (c) Peng, Z.-H.; Journet, Michel; Humphrey, Guy Org. *Lett.* 2006, 18, 395–398; (d) Girreser, U.; Heber, D.; Schütt, M. *Tetrahedron* 2004, 60, 11511–11517.
- (a) Baudet, N.; Knochel, P. Org. Lett. 2006, 8, 3737–3740; (b) Baraldi,
  P. G.; Bovero, A.; Fruttarolo, F.; Romagnolo, R.; Tabrizi, M. A.;
  Preti, D.; Varani, K.; Borea, P. A.; Moorman, A. R. Bioorg. Med. Chem. 2003, 11, 4161–4169.
- (a) Tumkevicius, S.; Dailade, M.; Kaminskas, A. J. Heterocycl. Chem.
  2006, 43, 1629–1633; (b) Aubert, T.; Farnier, M.; Meunier, I.; Guilard, R. J. Chem. Soc., Perkin. Trans. 1 1989, 2095–2098; (c) Kamal El-Dean, A. M.; Abdel-Moneam, M. E. E. J. Chin. Chem. Soc. 2002, 49, 1057–1060; (d) Clarke, K.; Gregory, D. N.; Scrowston, R. M. J. Chem. Soc., Perkin. Trans. 1 1973, 2956–2960.
- (a) Ali, A.; Taylor, G. E.; Ellsworth, K.; Harris, G.; Painter, R.; Silver, L. L.; Young, K. J. Med. Chem. 2003, 46, 1824–1830; (b) Taylor, E. C.; Patel, H. H. Tetrahedron 1992, 48, 8089–8100; (c) Davies, L. P.; Brown, D. J.; Chow, S. C.; Johnston, G. A. R. Neurosci. Lett. 1983, 41, 189–193; (d) Davies, L. P.; Chow, S. C.; Skerritt, J. H.; Brown, D. J.; Johnston, G. A. R. Life Sci. 1984, 34, 2117–2128; (e) Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Akberali, P. M.; Shetty, N. S. Bioorg. Med. Chem. 2006, 14, 2040– 2047.

- (a) Suna, E.; Matule, I. *Top. Curr. Chem.* 2006, *266*, 49–101; (b) Dallinger, D.; Kappe, O. C.; *Chem. Rev.* 2006; (c) Perreux, L.; Loupy, A. *Tetrahedron* 2001, *57*, 9199–9223.
- (a) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51–80; (b) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471–1499; (c) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3220; (d) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899–907; (e) Zhu, J. Eur. J. Org. Chem. 2003, 7, 1133–1144; (f) Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306–313.
- (a) Kappe, C. O. Angew. Chem. 2004, 43, 6250–6284; (b) Varma, R. S. Pure Appl. Chem. 2001, 73, 193–198.
- 8. General procedure for the reaction of 2-amino-4-amine-6-chloropyrimidine-5-carbaldehydes with hydrazine monohydrate. Microwave method: A mixture of compound (3) (0.2 mmol) and an excess of hydrazine monohydrate (0.5 mL) was subjected to microwave irradiation in the absence of solvent (maximum power 300 W during 1 min at a controlled temperature of 373 K) using a focused microwave reactor (CEM Discover). The solid products were collected by filtration and washed with ethanol and diethyl ether to give compound (4). Data for  $N^4$ -methyl- $N^4$ -phenyl-1*H*-pyrazolo[3,4-*d*]pyrimidine-4,6-diamine 4 (entry 1,  $\mathbf{R}^1 = \mathbf{C}_6 \mathbf{H}_5$ ,  $\mathbf{R}^2 = \mathbf{C} \mathbf{H}_3$ ), white crystalline solid, yield 70%, mp 313–315 °C. <sup>1</sup>H 400 MHz, DMSO-*d*<sub>6</sub>, δ: 3.44 (s, 3H, CH<sub>3</sub>), 5.61 (s, 1H, 3-H), 6.14 (s, 2H, NH<sub>2</sub>), 7.55-7.38 (m, 5H, H<sub>aromatics</sub>), 12.41 (s, 1H, NH). <sup>13</sup>C 100 MHz, DMSO-d<sub>6</sub>, rt, δ: 38.0 (CH<sub>3</sub>), 95.2 (C-3a), 128.0 (C<sub>p</sub>), 128.3 (C<sub>m</sub>), 130.0 (C<sub>o</sub>), 132.8 (CH), 145.1 (C<sub>i</sub>), 157.3 (C-4), 158.0 (C-7a), 161.7 (C-6). HR-MS calcd for C12H12N6 240.1123, found 240.1122. Anal. Calcd for  $C_{12}H_{12}N_6$ : C, 59.99; H, 5.03; N, 34.98. Found: C, 60.87; H, 5.74; N, 36.07.

Conventional method: A mixture of compound 3 (0.2 mmol) and an excess of hydrazine monohydrate (0.5 mL) in ethanol (5 mL) was heated under reflux for 30 min, then allowed to cool. The solid product was collected and washed with ethanol and diethyl ether to give the compound (4).

- (a) Clark, J.; Shahhet, M. S.; Korakas, D.; Varvounis, G. J. Heterocycl. Chem. 1993, 30, 1065–1072; (b) Taylor, E. C.; Gillespie, P. J. Org. Chem. 1992, 57, 5757–5761; (c) Seela, F.; Sterker, H. Helv. Chim. Acta 1986, 69, 1602–1613.
- 10. General procedure for the reaction of 2-amino-4,6-dichloropyrimidine-5carbaldehyde with amines. A solution of 2-amino-4,6-dichloro-5formylpyrimidine (2) (1 mmol), amine (1 mmol), and triethylamine (1 mmol) in EtOH (5.0 mL) was heated under reflux for 3 h. The solution was allowed to cool, and the product was filtered off, washed with EtOH, and air-dried. The times of reaction with primary amine were 1 h. Data for 4-(N-methyl-N-phenylamino)-2-amino-6-chloropyrimidine-5-carbaldehyde 3 (entry 1,  $R^1 = C_6H_5$ ,  $R^2 = CH_3$ ), yellow solid, yield 94%, mp >180 °C dec <sup>1</sup>H 400 MHz, DMSO- $d_6$ , rt,  $\delta$ : 3.40 (s, 3H, CH<sub>3</sub>); 7.20 (m, 3H, H<sub>m</sub>, H<sub>p</sub>); 7.32 (t, 2H, H<sub>o</sub>); 7.65–7.57 (s, 1H, and s, 1H for NH<sub>2</sub>); 9.44 (s, 1H, CH=O). <sup>13</sup>C 100 MHz, DMSO-d<sub>6</sub>, rt, δ: 41.0 (CH<sub>3</sub>); 104.4 (C-5); 124.6 (C<sub>m</sub>); 125.5 (C<sub>p</sub>); 129.5 (C<sub>o</sub>); 147.7 (C<sub>i</sub>); 161.7 (C-4); 162.7 (C-6); 164.4 (C-2); 183.2 (CH=O). MS IE *m*/*z*: 264/263/262 (M<sup>2+</sup>/M<sup>1+</sup>/M<sup>+</sup>, 39/35/94), 247/245(35/97), 210(21), 198(39), 156(22), 130/129(8/26), 107/106(10/41), 77(100), 52/51(18/ 63). Anal. Calcd for C12H11ClN4O: C, 54.87; H, 4.22; N, 21.33; O, 6.09. Found: C, 57.11; H, 4.16; N, 21.45.
- Ortiz, A.; Insuasty, B.; Torres, M. R.; Herranz, M. A.; Martin, N.; Viruela, R.; Ortí, E. *Eur. J. Org. Chem.* 2008, 99–108.
- (a) Trilleras, J.; Quiroga, J.; Cobo, J.; Marchal. A.; Nogueras, M.; Low, J. N.; Glidewell, C. *Acta Crystallogr., Sect. B* 2008, 64, in press; (b) Low, J. N.; Trilleras, J.; Cobo, J.; Marchal, A.; Glidewell, C. *Acta Crystallogr., Sect. C* 2007, 63, 681–684.